
Programming Norm Change

Nick Tinnemeier
Utrecht University
The Netherlands
nick@cs.uu.nl

Mehdi Dastani
Utrecht University
The Netherlands

mehdi@cs.uu.nl

John-Jules Meyer
Utrecht University
The Netherlands

jj@cs.uu.nl

ABSTRACT
To adequately deal with the unpredictable and dynamic en-
vironments normative frameworks are typically deployed in,
mechanisms for modifying the norms at runtime are cru-
cial. We present the syntax and operational semantics of
generic programming constructs to facilitate runtime norm
modification, allowing a programmer to specify when and
how the norms may be changed by external agents or by the
normative framework. The norms take on the form of con-
ditional obligations and prohibitions, which instantiate de-
tached obligations and prohibitions (instances). We present
rule-based constructs for runtime modification of the norms
and their instances, and a mechanism for automatically up-
dating the instances when their underlying norms change.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Programming Languages and
Software; D.3 [Programming Languages]: Miscellaneous

General Terms
Languages, Design, Theory

Keywords
Dynamic Norms, Programming, Operational Semantics

1. INTRODUCTION
Multi-agent systems are a potentially powerful means to

build complex software systems in which autonomous, het-
erogeneous and independently designed agents may dynami-
cally enter and exit. Because typically little can be assumed
about the behavior individual agents will exhibit, regulat-
ing their behavior has become a major challenge. The use
of organizational abstractions in general [16], and norms in
particular [14], have been widely promoted as an approach
for coordinating individual agents. The idea is that a multi-
agent system is equipped with a set of norms that dictate the
ideal behavior the agents ought to exhibit. Indeed, practical
approaches that employ a normative framework – a compu-
tational entity that is responsible for checking for violations

Cite as: Programming Norm Change, N.A.M. Tinnemeier, M. Dastani
and J-J. Ch. Meyer, Proc. of 9th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2010), van der Hoek,
Kaminka, Lespérance, Luck and Sen (eds.), May, 10–14, 2010, Toronto,
Canada, pp.�
Copyright c© 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

and fulfillments of the norms and applying sanctions accord-
ingly – in the construction of multi-agent systems are rapidly
emerging (see [9] for some examples).

Facing the unpredictable and dynamic nature of the en-
vironments normative frameworks are deployed in a static
view in which the norms are specified at design time and
cannot be modified at runtime does often not suffice [7, 4,
10]. Modifying norms at runtime increases the system’s flex-
ibility to manage a priori unforeseen situations. Consider a
conference management system example. If many review-
ers indicate that they will not be able to comply with the
norm specifying that reviews ought to be uploaded before
a certain deadline, the system might react to this by relax-
ing this norm. Although a considerable amount of work has
been devoted to the theoretical aspects of norm change (ex-
amples are [1, 3, 11]), rather less attention has been paid to
the practical aspects related to computational mechanisms
of norm change. Similar to [2, 5, 6] the focus of this paper
is on a computational mechanism for runtime norm change.

Norms are typically specified as conditional sentences defin-
ing under which circumstances deontic concepts such as obli-
gations, permissions and prohibitions are established. If, for
instance, a reviewer is assigned a paper, an obligation to
have uploaded its review for that paper is created. A key
question is then what happens to the obligations, permis-
sions and prohibitions when the underlying norms change.
This issue has been theoretically investigated in the context
of modifying legal systems [11]. However, existing work [2,
5, 6] on computational norm change considers changing the
normative specification, but does not address the intricacies
of how the associated deontic concepts may evolve.

Another issue related to norm change pertains to who is
responsible for deciding under which circumstances and how
the norms are changed. Some (e.g. [7, 2]) consider it the
task of the agents to alter the norms. Yet others (e.g. [5,
6]) consider it the responsibility of the normative framework
to autonomously modify the norms. However, none of the
aforementioned practical frameworks of norm change is gen-
eral purpose in the sense that it unifies both approaches.

This paper contributes to the operationalization of run-
time norm change, in particular:
• We describe the overall architecture of a norm change

mechanism within the context of a multi-agent system reg-
ulated by norms in section 2. Contrasting existing work
on the operationalization of norm change, the solution we
develop enables external agents as well as the normative
framework to change the norms.

• We present generic programming constructs (section 4) for
the runtime modification of norms and their deontic in-

957

957-964

n o r m a t i v e a r t i f a c t
i ns t i t u t i ona l f ac ts

b r u t e f a c t s

n o r m s c h e m e s

n o r m i n s t a n c e s

i c - r u l es

s c - r u l e s

n o r m c h a n g ee n f o r c e m e n t

a g e n t s

a c t i o n s

Figure 1: A normative artifact. Arrows from store
(rectangle) to process (ellipse) denote modification
and arrows in the opposite direction denote reading
of the store’s elements.

stances, also focusing on a construct for automatically up-
dating the deontic instances when their underlying norms
change. This has not been done before in respect of a
computational norm change mechanism.

• We formalize the programming constructs with an opera-
tional semantics [12] (section 5). This allows us to study
the proposed constructs in a mathematically rigorous way
and is already close to the implementation of an inter-
preter. To our best knowledge, we are the first to study
the operational semantics of norm change.

The norms that are subject to change are taken from [15] and
are briefly explained by means of an example of a conference
management system in section 3. This example will be used
to illustrate and motivate our architecture throughout the
rest of the paper. We compare our work with related work
in section 6 and conclude in section 7.

2. NORM ENFORCEMENT AND CHANGE
Norm change cannot be considered without the represen-

tation of norms and the mechanism responsible for enforcing
them. As a starting point we use the norms and accompa-
nying enforcement mechanism presented in [15]. The choice
for this work is mainly motivated by the declarative nature
of these norms and the presence of an operational semantics,
facilitating the definition of the operational semantics of the
norm change mechanism.
We conceive a multi-agent system regulated by norms as a

set of agents interacting with one (or more) normative arti-
fact(s). Inspired by the agents and artifacts approach [13], a
normative artifact encapsulates a domain specific state and
function that agents may use to achieve their objectives.
The conceptual architecture is shown in figure 1 with the
concepts originally introduced in [15] shown in italics.
The domain specific state is modeled by the brute facts

which can be used, for example, to store information about
uploaded papers and their reviews. Agents may exploit the
function provided by the artifact by performing actions,
which manipulate the brute facts. The rules of conduct
that help protect and maintain the design objectives of the
artifact and guide the agents in interacting with it in a
meaningful way are specified by the norm schemes. They
are conditional obligations and prohibitions that instanti-
ate norm instances (detached obligations and prohibitions)
when their condition is satisfied. Norm instances describe

which brute states should be achieved or avoided. The en-
forcement mechanism is responsible for creating norm in-
stances, detecting their fulfillment or violation, and punish-
ing agent’s wrongdoings by imposing sanctions on the brute
state. Information about (amongst others) norm violation
and which roles agents have enacted is stored by the insti-
tutional facts.

To allow for norms to change at runtime we enrich the
normative artifact with a separate norm change mechanism.
Our mechanism and its architecture is motivated by two key
principles. That is, norm change is:

system-dependent: how, who and under which circumstances
norms and their instances may be changed must be
specified by the normative framework;

enforcement-independent: the norm change mechanism must
be defined separately from the enforcement mecha-
nism.

The first principle accords with the definition of norma-
tive multi-agent system presented in [4] which includes that
“the normative systems specify how and in which extent the
agents can modify the norms.” Clearly, if the system does
not put restrictions on who and to which extent norms can
be changed the power of the system to regulate the agents’
behavior would be compromised. Moreover, deciding when
and how norms are changed requires knowledge about and
capabilities to reason with norms, fulfillments and violations.
The normative framework might benefit from keeping this
information private. Most importantly, norm-reasoning ca-
pabilities are beyond the competences of typical agency and
requiring such a specialized capability limits the types of
agents that can interact with the framework, thereby re-
stricting its openness. Therefore, we argue that the nor-
mative framework should provide suitable actions by which
the agents can change the norms without needing detailed
knowledge about their structure. This accords with the prin-
ciple of encapsulation (a.k.a. data hiding).

The second principle states that the norm enforcement
mechanism should be defined independently from the norm
change mechanism. This implies that specifying the code
that is concerned with norm change must be explicitly de-
fined as a separate component rather than entangling it with
the code defining the norm schemes. This pertains to a sepa-
ration of concerns, promoting readability and manageability
of the program. Another advantage is that (if desired) dif-
ferent computation mechanisms could be used for the norm
change mechanism without affecting the norm enforcement
mechanism and vice versa. In principle, the program that
defines how the norms may change could even be plugged
in at runtime to deal with unforeseen situations even more
flexibly. This is, however, beyond the scope of this paper.

The norm change mechanism is driven by two kinds of
constructs that are defined by the programmer. Both types
are rules consisting of a precondition that describes under
which circumstances the rule is applicable and a consequent
that specifies the changes to be made. The norm schemes
can be altered through the norm scheme change rules, which
will be abbreviated by sc-rules. The norm instances pertain-
ing to the active obligations and prohibitions can be changed
through the norm instance change rules, ic-rules for short.

The preconditions of the rules can range over brute facts,
institutional facts and norm instances that are in effect. This
way, one the one hand, the rules can be designed to assess
the situation of the artifact at runtime and express how the

958

〈id〉 a label uniquely identifying a norm scheme.
〈role〉 a symbol identifying a role that can be played.
〈b-atom〉 a first-order atom denoting a brute fact.
〈i-atom〉 a first-order atom denoting an institutional fact.
〈r-atom〉 a first-order atom of the form rea(i, r) in which r de-

notes a role and i the agent playing it.
〈action〉 a first-order atom of the form P (i, t1, . . . , tn) in which

predicate P denotes the name of the action, i the agent
performing it, and t1, . . . , tn the action’s arguments.

Table 1: Elementary syntactical constructs.

〈artifact〉 = "Roles:" 〈role〉 {〈role〉}
"Facts:" 〈b-lit〉 {〈b-lit〉}
"Effects:" 〈effect〉 {〈effect〉}
"Norms:" 〈norm〉 {〈norm〉};

〈effect〉 = "{" 〈pre〉 "}" 〈action〉 "{" 〈post〉 "}";
〈pre〉 = 〈b-lit〉 | 〈r-lit〉 | 〈pre〉 { "," 〈pre〉 };
〈post〉 = 〈b-lit〉 | 〈post〉 { "," 〈post〉 };
〈norm〉 = 〈id〉 ":<" 〈cond〉 "," 〈OP〉 "," 〈ddln〉 ">";
〈cond〉 = 〈b-lit〉 | 〈r-lit〉 | 〈cond〉 "and" 〈cond〉;
〈OP〉 = "O(" 〈b-test〉 ")" | "F(" 〈b-test〉 ")";
〈ddln〉 = 〈b-test〉;
〈b-lit〉 = 〈b-atom〉 | "not" 〈b-atom〉;
〈r-lit〉 = 〈r-atom〉 | "not" 〈r-atom〉;
〈i-lit〉 = 〈i-atom〉 | "not" 〈i-atom〉;
〈b-test〉 = 〈b-lit〉 | 〈b-test〉 "and" 〈b-test〉;

Figure 2: EBNF grammar of normative artifacts.

artifact could autonomously change the norms accordingly.
On the other hand, because agents can alter the brute facts
by the execution of actions, the norm change rules can also
be designed to empower agents to change the norms.
It is important to emphasize that the issue of how the en-

forcement and change mechanism are scheduled is beyond
the scope of this paper. The triggering, fulfillment or vi-
olation of a norm might enable the application of a norm
change rule, whereas a change to the norms again might ne-
cessitate enforcement of these modified norms. Norms will
most likely not change frequently and balancing between
enforcement and change with the goal of increasing compu-
tational efficiency is also application specific.

3. PROGRAMMING WITH NORMS
In this section we briefly discuss the syntax and intuitive

semantics of the programming language presented in [15]
by which normative artifacts can be programmed, and in
particular, the norms that are subject to change. It should
be emphasized that the norms presented here are a simpli-
fied version of the ones in [15]. We do not consider norms
that specify obligations and prohibitions that arise in the
sub-ideal situation an agent does not abide by the norms.
Nor do we include sanctions in the norm schemes. Sanction-
ing could be considered the agents’ responsibility or a sep-
arate sanctioning mechanism as, for instance, can be found
in [8] could be used. There is no particular difficulty for the
norm change mechanism in including sanctions in the norm
schemes. Also, we omit the parameters of the unique labels
by which norm schemes are identified. These parameters are
typically used for storing information such as the debtor of
a norm. We limit the representation to promote generality
and simplicity. The focus is on norm change, it is not our
goal to extend the expressiveness of the norms of [15].
The syntax by which artifacts can be programmed is de-

picted in figure 2 and the basic syntactical elements are ex-
plained in table 1. We briefly explain these constructs in
more detail by means of an example involving a conference

management system guiding agents playing the role of au-
thor, reviewer and chair. The system can be in different
phases, namely the phase in which the system is closed, ab-
stracts can be uploaded, papers can be uploaded, papers are
reviewed, reviews are collected and authors are notified. The
code of this program is partially listed in code fragment 3.1.
To program this system is to specify the roles that can be
played (line 1) and the initial brute state (line 2). The fact
id(X) is used to remember the identifier of the last unique
paper id that has been assigned. The effect rules specify how
the brute facts evolve under the performance of actions by
agents. They are of the form {Φ}α{Ψ}, intuitively meaning
that if action α is executed and the facts Φ hold in the cur-
rent brute state, the facts Ψ will be accommodated to the
new brute state. Lines 3-10 specify the actions for opening
the system; uploading abstracts, papers and reviews; and
(re)assigning papers to reviewers.

The desired behavior is dictated by the norm schemes tak-
ing on the form of conditional obligations and prohibitions,
expressed as tuples of the form l : 〈ϕc,P(ϕx), ϕd〉 with P

either an obligation denoted by O or a prohibition denoted
by F . The intuitive reading of a conditional obligation is
that “if condition ϕc holds then there is an obligation to es-
tablish the brute state denoted by ϕx before deadline ϕd is
satisfied by the brute state.” A conditional prohibition can
be intuitively read as “if condition ϕc holds it is forbidden
to establish the brute state denoted by ϕx before ϕd.”

The norm schemes for the conference management system
are listed on lines 10-14. The first norm scheme expresses
that uploaded papers should not exceed the page limit of
15 pages1. Suppose an author, say jane, has uploaded an
abstract and has been assigned id 547. As soon as the chair
puts the system in the submission phase the condition is sat-
isfied and the norm scheme is instantiated in a norm instance
(pagelimit, F(pages(547)>15), phase(review)) stating
that jane’s paper is not allowed to exceed 15 pages. It stays
into effect during the whole submission phase, i.e. until the
review phase starts. A violation is detected as soon as jane
uploads a paper of more than 15 pages. The second norm
scheme states that a reviewer is obliged to have uploaded its
assigned reviews before the reviews will be collected. This
obligation becomes active as soon as a reviewer is assigned a
paper and stays into effect until it is either fulfilled (the re-
view has been uploaded) or it is violated (the review has not
been uploaded before the deadline). The final norm spec-
ifies that by the end of the reviewing phase there should
be at least three reviews per paper. Note that the debtor
(the chair) is not explicitly stated by this norm scheme as
a consequence of the aforementioned omission of the label’s
parameters.

4. PROGRAMMING NORM CHANGE
We introduce two types of norm change rules, viz. norm

instance change rules (ic-rules for short) and norm scheme
change rules (sc-rules for short). More concretely, we extend
the grammar of a normative artifact with:

"IC-rules:" 〈ic-rule〉 { 〈ic-rule〉 }
"SC-rules:" 〈sc-rule〉 { 〈sc-rule〉 }

The grammar of ic-rules and sc-rules is shown in figure 3.
Both types of rules will be explained in more detail below.

1
To improve readability we introduce comprehensive names, such as

pages(PId) > 15, for the atoms which clarify their meaning.

959

Code fragment 3.1 Conference management system.

1Roles : cha i r , author , r ev i ewer
2Facts : phase (c l o s ed) , id (0)
3Effects :
4{ rea (C, cha i r) , phase (c l o s ed)} open (C) {not phase (c l o s ed) , phase (ab s t r a c t s)}
5:
6{ rea (A, author) , phase (ab s t r a c t s) , id (PId)} uploadAbstract (A) { abs t ra c t (A, PId) , not id (PId) , id (PId+1)}
7{ rea (A, author) , phase (submiss ion) , ab s t r a c t (A, PId)} uploadPaper (A, PId) {paper (A, PId)}
8{ rea (C, cha i r) , phase (review) , paper (A, PId)} a s s i gn (C,R, PId) { as s i gned (R, PId)}
9{ rea (C, cha i r) , a s s i gned (R1 , PId)} r e a s s i g n (C,R1 , PId ,R2) {not a s s i gned (R1 , PId) , r ea s s i gned (R1 , PId ,R2)}
10{ rea (R, rev i ewer) , phase (review) , a s s i gned (R, PId)} uploadReview (R, PId) { review (R, PId)}
11Norms :
12page l im i t : 〈phase (submiss ion) and abs t ra c t (A, PId) , F(pages (PId) > 15) , phase (review)〉
13review−due : 〈phase (review) and as s i gned (R, PId) , O(review (R, PId)) , phase (c o l l e c t)〉
14min−rev i ews : 〈phase (submiss ion) and paper (PId) , O(nrReviews (PId) ≥ 3) , phase (c o l l e c t)〉

〈ic-rule〉 = 〈ant〉 "=>" 〈ic-cons〉;
〈ant〉 = 〈b-lit〉 | 〈i-lit〉 | 〈r-lit〉 | 〈ni〉 | 〈ant〉 "and" 〈ant〉;
〈ni〉 = "(" 〈id〉 "," 〈OP〉 "," 〈ddln〉 ")";
〈ic-cons〉 = 〈ic-list〉 〈ic-list〉;
〈ic-list〉 = "[" 〈ni〉 { "," 〈ni〉 } "]" | "[]";
〈sc-rule〉 = 〈ant〉 "=>" 〈sc-cons〉 | 〈ant〉 "=>*" 〈sc-cons*〉;
〈sc-cons〉 = 〈sc-list〉 〈sc-list〉;
〈sc-cons*〉 = 〈sc-list〉 〈sc-list*〉;
〈sc-list〉 = "[" 〈norm〉 { "," 〈norm〉 } "]" | "[]";
〈sc-list*〉 = "[" 〈norm*〉 { "," 〈norm*〉 } "]" | "[]";
〈norm*〉 = 〈norm〉 | "nil";

Figure 3: EBNF grammar of norm change rules.

4.1 Changing Norm Instances
The ic-rules offer a fine-grained mechanism to change one

or more norm instances without changing their underlying
norm schemes. They specify under which conditions and
how changes to the norm instances are made. They are ex-
pressed as rules of the form β ⇒ [ni0, ..., nin][ni

′
0, ..., ni

′
m]

with the intuitive reading that under circumstances β norm
instances ni0, ..., nin are to be retracted and norm instances
ni′0, ..., ni

′
m are to be asserted. The rule’s precondition rang-

ing over brute facts, institutional facts and norm instances
thus describes when the norm instances should be modified.
How they should be modified is specified by the consequent.
Examples of these ic-rules in the context of our running

example are given in code fragment 4.1 lines 1-5. Suppose
that a reviewer R1 informs the chair that he will not be able
to fulfill his obligation to review a paper, then the chair
might decide to reassign this paper to another reviewer, say
R2. In this case the obligation for reviewer R1 is transferred
to reviewer R2, which boils down to removing the obligation
of R1 and creating a new one for R2. To give the new re-
viewer enough time to fulfill its obligation the deadline will
be set to the notification phase instead of the collect phase.
This is expressed by the first ic-rule. Recall the action reas-

sign(R1,PId,R2) listed in code fragment 3.1 by which the
chair can reassign paper PId from reviewer R1 to R2, modi-
fying the brute state such that the fact assigned(R1,PId)

is retracted and a fact reassigned(R1,PId,R2) is asserted.
The first ic-rule is an example of a norm modification that

is initiated by an agent. To illustrate a change of the norms
on the decision of the normative framework consider the
second ic-rule. Recall the norm of code fragment 4.1 that
specifies that at the start of the collect phase at least three
reviews should be uploaded for each paper. Assume that this
implies that given the actual amount of uploaded papers and
reviewers each reviewer would be assigned more than five pa-

pers. Suppose that the system reacts to this observation by
relaxing the requirement of three reviews per paper by only
requiring two. This is expressed by the second ic-rule that
will modify all min-reviews’ instances. Note that the vari-
ables of the ic-rule are thus implicitly universally quantified
in the widest scope. Because (for the sake of the example)
min-reviews only instantiates obligations in the submission
phase there is no need for modifying the norm scheme also.

4.2 Changing Norm Schemes
Whereas ic-rules are used for altering the norm instances,

sc-rules are used for modifying the norm schemes. The sc-
rules take on a similar form as the ic-rules. More specifically,
they are rules of the form β ⇒ [nsi, ..., nsn][ns

′
0, ..., ns

′
m]

in which β is a precondition that specifies when the norm
schemes should be changed. How the norm schemes should
be changed is specified by the two lists of the rule’s con-
sequent. The first list contains the norm schemes that are
to be removed, whereas the second list contains the norm
schemes that are to be added.

A key question in modifying a norm scheme is what hap-
pens to the norm instances it has already instantiated. In
some cases it is desirable that the instantiated norm in-
stances remain unaffected, whereas in other cases the asso-
ciated norm instances should be changed accordingly. Con-
sider, for example, a norm scheme that specifies that confer-
ence registrants are obliged to have paid a fee a week before
the conference starts. Suppose that for some reason (the
costs were higher than expected) we decide to increase this
fee, then this increased fee will sensibly only apply for new
registrants. In other words, we want the payment obliga-
tions that were in effect before the change to remain un-
affected. If, however, the payment deadline is extended
we might decide to apply this change retroactively. That
is to say, the deadline of already existing payment obliga-
tions will also be extended. For this reason, we propose two
types of norm scheme change rules. One that leaves the in-
stantiated norm instances unaltered when their underlying
norm scheme is changed and one that revises the associated
norm instances accordingly. We name the first type of norm
scheme change instance-preserving and the latter instance-
revising. To distinguish between the two rules, the arrow of
the instance-revising rules will be annotated with an aster-
isk, i.e. will take on the form ⇒∗.

Updating a norm scheme is to delete the original norm
scheme, say ns, and replacing it by a new one, say ns′. If an
instance-preserving update is performed, all the instances
of ns will remain intact. If, however, an instance-revising

960

Code fragment 4.1 Examples of norm change.

1IC−rules :
2r e a s s i gned (R1 , PId ,R2) and (review−due , O(review (R1 , PId) , phase (P)) ⇒
3[(review−due ,O(review (R1 , PId)) , phase (c o l l e c t))] [(review−due ,O(review (R2 , PId)) , phase (no t i f y))]
4phase (review) and 3∗nrPapers ()/ nrReviewers ()>5 and (min−reviews , O(nrReviews (PId)≥3) , phase (P)) ⇒
5[(min−reviews , O(nrReviews (PId)≥3) , phase (P))] [(min−reviews , O(nrReviews (PId)≥2) , phase (P))]
6SC−rules :
7nrPapers () > 10 and nrV io l a t i on s (page l im i t)/ nrPapers () > 0 .25 ⇒∗
8[page l im i t : 〈phase (submiss ion) and abs t ra c t (A, PId) , F(pages (PId) > 15) , phase (review)〉 ,
9page l im i t : 〈phase (submiss ion) and abs t ra c t (A, PId) , F(pages (PId) > 15) , phase (review)〉]
10[page l im i t1 : 〈phase (submiss ion) and abs t ra c t (A, PId) , F(15 < pages (PId) ≤ 17) , phase (review)〉 ,
11page l im i t2 : 〈phase (submiss ion) and abs t ra c t (A, PId) , F(pages (PId) > 17) , phase (review)〉]

update is performed this means that each instance of ns is
removed and transformed into an instance of ns′. We thus
need to know by which norm scheme a scheme should be
replaced. We relate a norm scheme with the norm scheme it
should transform into by the position they respectively have
in the retract and assert list, visualized:

β ⇒∗ [ns0, ns1, ..., nsn]
↓ ↓ ↓ replaced by

[ns′0, ns
′
1, ..., ns

′
n]

As demonstrated by the following example, the trans-
formation of norm schemes is not necessarily one on one.
In fact, a norm scheme might evolve into multiple norm
schemes and multiple norm schemes might be merged into
one. If one only wants to remove a norm scheme ns together
with all its associated instances, special element nil can be
used to transform ns into an empty norm scheme.
Suppose that it is observed that the norm scheme page-

limit of code fragment 3.1 is often violated, e.g. more than
ten papers have been uploaded of which more than 25%
violates the page limit norm.2 In reaction we could, for
example, decide to allow authors to pay for an additional
two pages and reject papers which exceed the limit by more
than two pages. To be able to distinguish between violations
that stay within the boundary of two pages and violations
by more than two pages, we replace the pagelimit norm
scheme by two norm schemes pagelimit1 and pagelimit2

as listed on lines 7–11 of code fragment 4.1. Because the
pagelimit norm scheme evolves into two norm schemes it
occurs twice in the removal list. To illustrate how the norm
instances of norm scheme pagelimit are transformed by the
application of this sc-rule consider the norm instance:

(pagelimit, F(pages(547) > 15), phase(review)) (1)

that was instantiated out of norm scheme pagelimit using
substitution {PId/547}. To transform norm instance (1)
into norm instances of pagelimit1 and pagelimit2 we use
this same substitution. That is to say, we apply the sub-
stitution {PId/547} on the norm schemes pagelimit1 and
pagelimit2. After application of the sc-rule instance (1)
will thus be transformed into the two norm instances:

(pagelimit1, F(15 < pages(547) ≤ 17), phase(review)) (2)

(pagelimit2, F(pages(547) > 17), phase(review)) (3)

2
Even though we assume this information to be available, in [15]

no history about violations is recorded. Extending the enforcement
mechanism to store this information is beyond the scope of this paper.

5. OPERATIONAL SEMANTICS
An operational semantics describes the behavior of a pro-

gramming language in terms of transitions between program
configurations. A configuration describes a state of the pro-
gram and a transition is a transformation of one configu-
ration γ into another γ′, denoted by γ → γ′. Transitions
are derived by derivation rules of the form P

γ→γ′ with the

intuitive reading that γ → γ′ can be derived if premise P
holds. An execution trace is then a sequence of transitions
γ0 → γ1 → . . . → γn (often written as γ0 →∗ γn) derived by
applying transition rules to an initial configuration.

As explained before, a norm instance is instantiated from
its norm scheme when its condition is derivable from the
brute and institutional state for some substitution of its for-
mal parameters. Instantiating a norm scheme is to apply
this substitution on it resulting in a norm instance. Hence-
forth, to denote the set of all variables v that occur in an
unground norm instance or formula φ we write φ(v).

Definition 1 (Norm Instantiation). Given a norm
scheme ns = l : 〈ϕc(v1),P(ϕx(v2)), ϕd(v3)〉 in which v2 ∪
v3 ⊆ v1 and a ground substitution θ for the variables the
function inst that instantiates a norm instance from ns is
defined as: inst(ns, θ) = (l,P(ϕx(v2)), ϕd(v3))θ

Note the restriction on the variables. It is to assure norm
instances to be ground, otherwise it would not be clear if the
variables occurring in them should be universally or existen-
tially quantified (see also [15]). Although we assume ground
substitutions in the previous definition and some that will
follow, we introduce the notion of well-formedness of a rule.
Later we show that given this restriction and the semantics
provided below the norm instances remain ground.

Definition 2 (Well-formedness). We say an ic-rule
β(x) ⇒ [ni0(y0), ..., nin(yn)][ni

′
0(z0), ..., ni

′
m(zm)] is well-

formed iff
⋃

0≤j≤n yj ∪
⋃

0≤k≤m zk ⊆ x.

We say an instance-revising sc-rule of the form β ⇒∗
[ns0, ..., nsn][ns

′
0, ..., ns

′
n] is well-formed iff each norm scheme

nsj = l : 〈ϕc,P(ϕx(v)), ϕd(w)〉 and each norm scheme ns′j =
l′ : 〈ϕ′

c,P
′(ϕ′

x(x)), ϕ
′
d(y)〉 for 0 ≤ j ≤ n we have x∪y ⊆ v∪w.

It should be noted that this restriction only guarantees the
instances to remain ground in the context of the norm change
mechanism. Additional restrictions are needed for the en-
forcement mechanism, but these are not shown here. The
configuration of a normative artifact is defined as follows.

Definition 3 (Normative Artifact). A (normative)
artifact configuration is a tuple 〈σb, σi,Δ, δ, Ric, Rsc〉 with:

• σb a set of ground brute facts;

961

• σi a set of ground insitutional facts;

• Δ a set of norm schemes;

• δ a set of ground norm instances;

• Ric a set of well-formed ic-rules;

• Rsc a set of well-formed instance-revising sc-rules and
instance-preserving sc-rules.

A configuration 〈σb, ∅,Δ, ∅, Ric, Rsc〉 specified by a program
s.t. σb is characterised by the program’s facts component,
Δ defined by the program’s norms component, Ric and Rsc

respectively defined by the program’s ic-rules and sc-rules
component is called an initial artifact configuration.

Henceforth, we assume a normative artifact configuration
〈σb, σi,Δ, δ, Ric, Rsc〉. Ric and Rsc will be ommitted, be-
cause they will not change during computation.
In applying the rules of norm change their precondition

needs to be evaluated. Recall that the condition ranges over
brute facts, institutional facts and norm instances. We de-
fine the entailment for preconditions as follows.

Definition 4 (Entailment). Let φ be a (brute or in-
stitutional) literal, (l,P(ϕx), ϕd) a norm instance, and ψ1(x),
ψ2(y) a rule’s antecedent. Given substitutions θ, θ1 and θ2,
the entailment relation |=t that evaluates rule condition ex-
pressions w.r.t. sets of brute facts, institutional facts and
norm instances (σb, σi, δ) is defined as:

• (σb, σi, δ) |=t (φ)θ iff φθ ∈ (σb ∪ σi)

• (σb, σi, δ) |=t (l,P(ϕx), ϕd)θ iff (l,P(ϕx), ϕd)θ ∈ δ

• (σb, σi, δ) |=t (ψ1(x) and ψ2(y))θ iff ∃θ1 : [θ1 = θ|x
and (σb, σi, δ) |=t ψ1(x)θ1 and ∃θ2 : [θ2 = θ|(y \ x)
and (σb, σi, δ) |=t ψ2(y)θ1θ2]]

in which “|” is to be read as “restricted to the domain”.

An ic-rule is applicable when its precondition can be en-
tailed for at least one substitution θ. Applying an ic-rule is
then to consecutively apply each substitution that satisfies
the precondition on each element of the rule’s retraction and
assertion list. The result is a set of norm instances to be re-
moved and a set of norm instances to be asserted. The arti-
fact’s norm instances will then be updated by first removing
the first set and then asserting the latter set. The following
transition rule defines the application of an ic-rule. We an-
notate the transition (and the transitions that will follow)
with information about the substitutions and which rule is
applied. This is not essential for the semantics, but we use
it later on to ease notation.

Rule 1. Let r = (β ⇒ [ni0, ..., nin][ni
′
0, ..., ni

′
m]) ∈ Ric

in which n,m ≥ 0 be a norm instance change rule.

Θ = {θ | (σb, σi, δ) |=t βθ} Θ �= ∅

〈σb, σi,Δ, δ〉 r,Θ−→ 〈σb, σi,Δ, δ′〉
with δ′ = (δ \ {ni0θ, ..., ninθ | θ ∈ Θ}) ∪ {ni′0θ, ..., ni′mθ | θ ∈ Θ}

Recall that the application of an instance-preserving rule
does only affect the norm schemes, leaving their associated
instances unaltered. The transition rule that defines the ap-
plication of instance-preserving sc-rules is defined in a sim-
ilar manner as that of the ic-rules. The difference is that
now the norm schemes are updated instead of the norm in-
stances. Unlike ic-rules, we assume that each variable that

occurs in an (instance-revising or instance-preserving) sc-
rule’s antecedent does not occur in its consequent. We take
this assumption to not unnecessarily complicate the seman-
tics of the (in particular instance-revising) sc-rules. Because
of this assumption only one substitution for which the rule
is applicable has to be considered.

Rule 2. Let r = (β ⇒ [ns0, ..., nsn][ns
′
0, ..., ns

′
m]) ∈ Rsc

in which n,m ≥ 0 be a norm scheme change rule.

(σb, σi, δ) |=t βθ

〈σb, σi,Δ, δ〉 r−→ 〈σb, σi,Δ
′, δ〉

with Δ′ = (Δ \ {ns1, ..., nsn}) ∪ {ns′1, ..., ns′m}
The application of an instance-revising sc-rule not only

involves updating the norm schemes, but also involves up-
dating the norm instances that have been instantiated out of
them. Recall that we use the substitutions that are used for
creating instances of the norm scheme to be modified, say
ns, for creating new norm instances of the norm scheme ns
is replaced with. To modify a norm scheme we need to know
which norm instances it has created and which substitution
of the variables has been used in creating them.

Definition 5 (Instances). Let ns be a norm scheme
and S be a set of norm instances. The function I that eval-
uates to all norm instances in S which are instances of ns
together with their associatated substitutions, is defined as:

I(ns, S) = {(ni, θ) | ni ∈ S and inst(ns, θ) = ni
and θ a ground substitution}

Remember that the consequent of an instance-revising
sc-rule is of the form [ns0, ..., nsn][ns

′
0, ..., ns

′
n] intuitively

meaning that each norm scheme nsi for 0 ≤ i ≤ n will
be replaced by norm scheme ns′i and the instances of nsi
will be reinstantiated into instances of ns′i. Applying this
instance-preserving sc-rule then boils down to: 1) removing
each norm scheme nsi from the normative artifact; 2) as-
serting each norm scheme ns′i to the normative artifact; 3)
removing all instances of each norm scheme nsi; and 4) in-
stantiating each ns′i with the same substitutions that were
used in instantiating the associated norm instances of nsi.

Rule 3. Let r = (β ⇒∗ [ns0, ..., nsn][ns
′
0, ..., ns

′
n]) ∈ Rsc

in which n ≥ 0 be a norm scheme change rule.

(σb, σi, δ) |=t βθ

〈σb, σi,Δ, δ〉 r−→ 〈σb, σi,Δ
′, (δ \ δ−) ∪ δ+〉

with
Δ′ = (Δ \ {ns0, ..., nsn}) ∪ ({ns′0, ..., ns′n} \ {nil})
δ+ =

⋃
0≤j≤n{inst(ns′j , θ) | (ni, θ) ∈ I(nsj , δ) and ns′j �= nil}

δ− =
⋃

0≤j≤n{ni | (ni, θ) ∈ I(nsj , δ)}

We conclude this section by showing some basic, yet es-
sential, properties the semantics exhibits. These proper-
ties summarize the meaning of the norm-change rules and
demonstrate they indeed behave as we intuitively explained
in previous sections. To ease notation we define the some
auxiliary operators. Given an ic-rule or sc-rule rule r =
β ⇒(∗) [φ0, ..., φn][φ

′
0, ..., φ

′
m] and substitutions Θ we define:

add(r)Θ = {φ′
0θ, ..., φ

′
mθ | θ ∈ Θ}

del(r)Θ = {φ0θ, ..., φnθ | θ ∈ Θ}
tail(r) = [φ0, ..., φn][φ

′
0, ..., φ

′
m]

Set of substitutions Θ will be omitted whenever empty.

962

Definition 6 (Update, addition and retraction).
Let 〈σb, σi,Δ, δ〉 be an artifact configuration. The operators
⊕, � and � are defined as follows:

• δ ⊕ add(r)Θ = δ′ iff r = β ⇒ [][ni0, ..., nin]

and 〈σb, σi,Δ, δ〉 r,Θ−→ 〈σb, σi,Δ, δ′〉
• δ � del(r)Θ = δ′ iff r = β ⇒ [ni0, ..., nin][]

and 〈σb, σi,Δ, δ〉 r,Θ−→ 〈σb, σi,Δ, δ′〉
• (Δ, δ)� tail(r) = (Δ′, δ′) iff

r = β ⇒∗ [ns0, ..., nsn][ns
′
0, ..., ns

′
n]

and 〈σb, σi,Δ, δ〉 r−→ 〈σb, σi,Δ
′, δ′〉

The following propositions highlight the essential mean-
ing of norm instance change rules. The first two show that
instances of the retract list are indeed removed from the set
of norm instances and that this set is indeed expanded by
the instances of the addition list. The third shows that re-
tracting and consecutively asserting a set of instances yields
the same set. It tells us that we can recover a change once
made. It is interesting to note the similarity (but not equiv-
alence!) with the success of retraction and expansion, and
recovery AGM postulates [1].

Proposition 1. Given set of norm instances S.

1. S ⊆ (δ ⊕ S)

2. S ∩ (δ � S) = ∅
3. if S ⊆ δ then δ = (δ � S)⊕ S

Sketch of Proof. Directly follows from the definition of
rule 1 which adds/removes the whole set and only the whole
set of norm instances {ni0θ, ..., ninθ | θ ∈ Θ} to/from δ.

Similar (trivial) results can be shown for the instance-
preserving sc-rules, but are omitted to save space. Instead,
we show similar properties for the instance-revising scheme
change rules. The first proposition pertains to success of ad-
dition, whereas the second pertains to success of retraction.
The third proposition could be considered success of rein-
stantiating the norm instances according to the change of
their underlying norm scheme. The fourth proposition can
be considered the recovery postulate for an instance-revising
update of the norm schemes.

Proposition 2. Given an instance-revising sc-rule r1 =
β ⇒∗ [ns0, ..., nsn][ns

′
0, ..., ns

′
n] and its reverse r2 = β ⇒∗

[ns′0, ..., ns
′
n][ns0, ..., nsn] s.t. all norm schemes have dis-

joint labels and are not nil, and (δ′,Δ′) = (δ,Δ)� tail(r1).

1. add(r1) ⊆ Δ′

2. del(r1) ∩Δ′ = ∅
3. if inst(nsj , θ) ∈ δ with 0 ≤ j ≤ n and subst. θ then

inst(nsj , θ) �∈ δ′ and inst(ns′j , θ) ∈ δ′

4. if del(r1) ⊆ Δ and add(r1) ∩ Δ = ∅ and ∀0≤j≤n :
I(ns′j , δ) = ∅ then (δ,Δ) = (δ′,Δ′)� tail(r2)

Proof. Let S = {ns0, ..., nsn} and S′ = {ns′0, ..., ns′n}.
(1 and 2) Follows from rule 3 in which Δ′ = (Δ \ S) ∪ S′

and S disjoint with S′ (by assumption of disjoint labels).
(3) Note that δ′ = (δ \ δ−)∪ δ+ (definition of rule 3). We

have inst(ns′j , θ) ∈ δ′, because inst(ns′j , θ) ∈ δ+ through 1)
inst(nsj , θ) ∈ δ (by assumption) and 2) ns′j �= nil (by as-
sumption). We have inst(nsj , θ) �∈ δ′ since 1) inst(nsj , θ) ∈
δ− and 2) inst(nsj , θ) �∈ δ+ (assumption of disjoint labels).
(4) Let (δ′′,Δ′′) = (δ′,Δ′)�tail(r2). To prove that (δ,Δ) =

(δ′′,Δ′′). Rule 3 ensures Δ = Δ′′ because 1) Δ′ = (Δ \S)∪
S′ (rule 3), 2) Δ′′ = (Δ′ \ S′) ∪ S (rule 3), 3) S ⊆ Δ and

S′ ∩Δ = ∅ (by assumption) and 4) S ∩ S′ = ∅ (assumption
of disjoint labels). To prove δ = δ′′ we show that ni ∈ δ ⇔
ni ∈ δ′′ with ni an instance of nsj or ns′j for 0 ≤ j ≤ n.
Note that δ′′ = (δ′ \ δ′−) ∪ δ′+ and δ′ = (δ \ δ−) ∪ δ+ (by
definition of rule 3). Note that I(ns′j , δ) = ∅ (by assump-
tion), so for (⇒) we only take inst(nsj , θ) ∈ δ for ground
substitution θ. Rule 3 ensures inst(nsj , θ) ∈ δ′′ because
1) inst(ns′j , θ) ∈ δ′ (by definition of δ+ and ns′j �= nil),
2) (inst(ns′j , θ), θ) ∈ I(ns′j , δ

′) (because of well-formedness)
and consequently 3) inst(nsj , θ) ∈ δ′+ (by definition of δ′+

and nsj �= nil). For (⇐) we use contraposition. Assume
inst(nsj , θ) �∈ δ for ground substitution θ. Rule 3 ensures
inst(nsj , θ) �∈ δ′′, because 1) inst(ns′j , θ) �∈ δ (by assump-
tion), 2) inst(ns′j , θ) �∈ δ′ (by definition of δ+ and disjoint
labels) and consequently 3) inst(nsj , θ) �∈ δ′+ (by definition
of δ′+). Next, assume inst(ns′j , θ) �∈ δ for some substitu-
tion θ. Rule 3 ensures that inst(ns′j , θ) �∈ δ′′ because 1)
δ′− is such that all instances of ns′j are removed and 2)
inst(ns′j , θ) �∈ δ′+ (by assumption of disjoint labels).

Interestingly, recovery only holds under certain conditions
of which the least obvious one is the restriction that all labels
are disjoint. (In fact, this restriction is too strong, but keeps
the proposition comprehensible.) This excludes consecu-
tively applying a rule with consequents [ns1, ns2][ns3, ns3]
and [ns3, ns3][ns1, ns2]. Suppose ns1 = l1 : 〈c,O(x(X)), d〉,
ns2 = l2 : 〈c,O(x(X)), d〉 and ns3 = l3 : 〈c,O(x(X)), d〉
It is left to the reader to check that given set of norm
instances δ = {(l1, O(x(a)), d)} this excution yields δ′′ =
{(l1, O(x(a)), d), (l2, O(x(a)), d)}.

The concept of well-formedness was introduced with the
goal of guaranteeing the norm instances to be ground. The
following proposition shows that given the semantics for the
norm change rules they indeed remain ground.

Proposition 3. Let γ0 = 〈σb, σi,Δ, δ〉 be an artifact con-
figuration s.t. all norm instances in δ are ground. Then for
every trace γ0 →∗ γn with γn = 〈σ′

b, σ
′
i,Δ

′, δ′〉 it holds that
that each norm instance ni ∈ δ′ is ground.
Proof. Only transition rules 1 and 3 add instances. Rule
1 is such that the substitutions that satisfy the antecedent
are applied on the norm instances in the consequent. These
substitutions are ground because of well-formedness. Rule
3 reinstantiates the instances of each scheme in the retract
list by applying the substitution used in creating them on the
corresponding scheme in the assert list. Because of well-
formedness these substitutions are ground.

6. RELATED WORK
Artikis [2] has presented an infrastructure allowing agents

to modify a protocol (a set of laws) at runtime. A proto-
col specification is stratisfied in n layers, in which layer 0
defines the domain protocol and each level 0 < k ≤ n de-
fines a meta protocol specifying the regulations for changing
the level k − 1 protocol. Part of a protocol specification
are the “Degrees of Freedom” which define the protocol’s
specification components that may be modified, for exam-
ple, different alternatives for a law that are replacable at
runtime. Unlike Artikis we do not distinguish between dif-
ferent protocol levels; under which circumstances the norms
in our framework may change is statically specified by the
norm change rules’ conditions. Another difference is related
to the principle of enforcement-indepency (cf. section 2). In

963

Artikis’ approach the changes that can be made to the pro-
tocols are hardwired in the protocols themselves, whereas
in our approach the code that defines how the norms may
evolve is completely separated from their specification.
In [5, 6] Bou et al. and Campos et al. have proposed

an approach in which the normative framework (“electronic
institution” in their terminology) can change the norms at
runtime. They extend a normative framework with a set of
values modeling information about environment and agents,
and a set of quantative goals denoting the desired values and
a transition function that specifies how the norms evolve
based on the institutional goals and observed properties.
The main aim of [5] is to learn the transition function that
best accomplishes the institutional goals, whereas more close
to our approach in [6] it is assumed that this transition func-
tion is defined by the programmer. Contrasting our ap-
proach in [5, 6] changing the norms is limited to the modi-
fication of existing norms. That is, neither new norms can
be added nor can existing norms be removed. Moreover,
we adopt a qualitative rather than a quantative approach in
modeling information about agents and environment.
Also related to our work is the theoretical work of Boella

and Van der Torre [3] who have proposed a logical frame-
work for modeling a normative system (“normative agent”as
they call it) in which “count-as rules” specify when and how
the norms of the system may be changed. These count-as
rules show close similarities to our norm change rules; the
antecedent of the rules ranges over brute and institutional
facts specifying when the norms may be changed, whereas
the consequent contains actions that define how the norms
should be modified.

7. CONCLUSION AND FUTURE WORK
We presented the syntax and operational semantics of

generic programming constructs to facilitate the runtime
modification of norms. We introduced rule-based constructs
for modifying 1) conditional obligations and prohibitions
(normative specification), 2) the detached obligations and
prohibitions (deontic instances) they create, and 3) the nor-
mative specification such that also their associated deontic
instances are automatically updated. The architecture we
presented enables a programmer to specify when and how
the norms may be changed by external agents or by the
normative framework itself.
The operational semantics is already close to the imple-

mentation of an interpreter and allowed us to mathemati-
cally investigate some basic properties of norm change rules.
Yet, to gain more insights in the practical aspects of our ap-
proach, an actual implementation is indispensable. There-
fore, we are in the process of implementing a prototype in
the rule-based language Jess3. It is also important to note
that the semantics does not define any order in which the
norm change rules are applied. Observe that applying norm
change rules in different order might yield different results.
For one reason, because the preconditions range over norm
instances, the application of an ic-rule might enable or dis-
able the application of some other rule. We envisage differ-
ent strategies for applying norm change rules, e.g. an ex-
plicit priority ordering among the norm change rules. This
is left for future research. Also, we did not say anything
about norm consistency. As for now, the burden of avoid-

3
See http://www.jessrules.com for more information.

ing conflicts between norms is on the programmer. Intro-
ducing a mechanism to guarantee norm consistency without
compromising practicality is left future research. AGM-like
postulates could then be used to posit the properties such a
mechanism should exhibit. Other future research directions
include extending the framework to deal with constitutive
norms (cf. [3]) and “contrary-to-duty” norms also (cf. [15]).

8. REFERENCES
[1] C. E. Alchourron, P. Gardenfors, and D. Makinson.

On the logic of theory change: Partial meet
contraction and revision functions. Journal of
Symbolic Logic, 50:510–530, 1985.

[2] A. Artikis. Dynamic protocols for open agent systems.
In Proc. of AAMAS, pages 97–104. IFAAMAS, 2009.

[3] G. Boella and L. van der Torre. Regulative and
constitutive norms in normative multiagent systems.
In Proc. of KR, pages 255–265. AAAI Press, 2004.

[4] G. Boella, L. van der Torre, and H. Verhagen.
Introduction to normative multiagent systems.
Comput. Math. Organ. Theory, 12(2-3):71–79, 2006.

[5] E. Bou, M. López-Sánchez, and J. A.
Rodŕıguez-Aguilar. Adaptation of autonomic
electronic institutions through norms and institutional
agents. In Proc. of ESAW, pages 300–319, 2006.

[6] J. Campos, M. López-Sánchez, J. A.
Rodŕıguez-Aguilar, and M. Esteva. Formalising
situatedness and adaptation in electronic institutions.
In COIN IV. Revised Selected Papers, pages 126–139,
Berlin, Heidelberg, 2009. Springer-Verlag.

[7] C. Castelfranchi. Engineering social order. In Proc. of
ESAW, pages 1–18, London, UK, 2000. Springer.

[8] M. Dastani, D. Grossi, J.-J. C. Meyer, and
N. Tinnemeier. Normative multi-agent programs and
their logics. In Post. proc. of KRAMAS’08, 2009.

[9] V. Dignum, editor. Handbook of Research on
Multi-Agent Systems: Semantics and Dynamics of
Organizational Models. IGI Global, 2009.

[10] V. Dignum. The Role of Organization in Agent
Systems, chapter 1, pages 1–16. In Handbook of
Research on Multi-Agent Systems [9], 2009.

[11] G. Governatori and A. Rotolo. Changing legal
systems: Abrogation and annulment. Part I: Revision
of defeasible theories. In Proc. of DEON, pages 3–18.
Springer, 2008.

[12] G. D. Plotkin. A structural approach to operational
semantics. Technical Report DAIMI FN-19, University
of Aarhus, 1981.

[13] A. Ricci, M. Viroli, and A. Omicini. Give agents their
artifacts: the A&A approach for engineering working
environments in MAS. In AAMAS, 2007.

[14] Y. Shoham and M. Tennenholtz. On social laws for
artificial agent societies: off-line design. Art. Int.,
73(1-2):231–252, 1995.

[15] N. Tinnemeier, M. Dastani, J.-J. C. Meyer, and
L. van der Torre. Programming normative artifacts
with declarative obligations and prohibitions. In Proc.
of WI/IAT’09. IEEE Computer Society, 2009.

[16] F. Zambonelli, N. Jennings, and M. Wooldridge.
Organisational rules as an abstraction for the analysis
and design of multi-agent systems. Softw.. Eng.
Knowl. Eng., 11(3):303–328, 2001.

964

